NOVA 电子积木入门套件 教程

·

haohaodada 版

(支持 Nduino HD)

好好搭搭在线 STARLAB 创客社区

第一部分 基本模块

第一课 初识体验 NOVA 电子积木

一、 认识 NOVA 电子积木

NOVA 电子积木是一系列可编程开源硬件模块,包括主控模块 Nduino,和多种输入模块、 传感器模块、通信模块等功能模块。

支持好好搭搭在线编程平台,并为其开发了专用的 NOVA 系列程序块,进一步降低编程难度,方便实现更加多样化的创造。

@ 文件▼ 编辑▼	1 -	- X X Ø		
omovero 🖡 🔴	脚本			🖌 分 享 🏠 特到项目页
x 20 y 10	日本 日本		ана и на	<pre>¥4年下記 #define C1 25 DigitDisplay dis=DigitDisplay(M0); void setup(){ pinMode(S0,INPUT); pinMode(S0,INPUT); } void loop(){ f(((clapitalRead(S0))==(1))){ dis.claen); while(!(((digitalRead(S0))==(0))))</pre>

硬件连接非常简单:两个相同颜色的接口相互连接。

接下来用一个案例,亲身体验 NOVA 电子积木的使用。

二、 首次使用好好搭搭在线编程平台

1. 登入好好搭搭在线编程平台,网址:www.haohaodada.com

haohaodada 🗃	1 创作 发现 学习 资源	登录	加入
	2016年贵州省中小学生"多彩创客、智道 创意编程及开源电子设计类大赛	适无限" 活动专区	
	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		
	创意编程	查看全部	
	SUPER Inter Los ** Arces Los ** Constant ** Arces Los ** Constant ** Constant ** Constant	 株喜迎关い (小気間天下 V1.3正式版 作者 創意編程 ・ 135 ★ 55 ● 0 ● 54646 	
	精华作品	查看全部	
		• >	

2. 注册账号:

注册账号点击"加入"按钮

「おうのわれのはあね」「「「「「「」」」」「「「「」」」」「「「」」」」「「「」」」」「「」」」」「「」」」」		登录 加入
2016年贵州省中小学生"多	彩创客、智造无限"	
创意 编 注册 用户	计类大赛活动专区	
用户名		
Nova *		
······································		
确认密码		
邀请码创意编程	查看全部	
SUPER :== 】 注册 退出	7.8.9	
MIRHU BRUS. nova注册成功!	赤喜通关11	
	受请刑行大量的行来!	
	THE ANT WE AND THE ADDRESS OF ADDRESS	

输入用户名、密码并确认密码,邀请码可不填。点击"注册"按钮,会弹出注册成功提示。点击"退出"按钮关闭注册窗口。

3. 登录账号:

点击右上角"登录"按钮,弹出用户登录窗口,输入已注册好的用户名和密码,点击 "登录"按钮,即可登录。

登录成功后,右上角会显示用户名。

4. 下载谷歌浏览器(如果已安装 chrome、360 浏览器、猎豹浏览器,忽略此步)

◎ ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●	
Image: With Water Color 猫友汇-好好搭搭 的客教育云讲堂 創意編程 #####	

点击"资源"按钮

haohaodada	首页创作发现。学习资源				es nov
	请使用谷歌浏览器体验更佳				
	资源下载			查看全部	
	Scratch初级培训课程学习手册素材下载	[2016-05-09]	好好搭搭Scratch中文离线版下载	[2016-03-09]	
	特里斯机器人驱动程序	[2016-03-10]	谷歌浏览器绿色版下载	[2016-03-09]	
	好好搭搭插件下载	[2016-03-27]			

点击"谷歌浏览器绿色版下载"。

haohaodada	首页创作发现	学习 资源					🔁 nova
	[资源下载][\$	(件资源)	谷歌 2016	浏览器绿色版下载 03-09 08:02:01 阅读9719		A 的复数44	
	谷歌浏览器下载]					
点击下载,	下载完成后	解压压缩包	i.				
		Арр	Data	ChromePo	ChromePo		

rtable.exe

rtable.ini

双击"ChromePortable.exe"文件,启动谷歌浏览器。

5. 下载好好搭搭编程插件:

Dhaodada 首页创作发现学习资源			
请使用谷歌浏览器体验更佳			
资源下载			查看全部
Scratch初级培训课程学习手册素材下载	[2016-05-09]	好好搭搭Scratch中文离线版下载	[2016-03-09]
特里斯机器人驱动程序	[2016-03-10]	谷歌浏览器绿色版下载	[2016-03-09]
好好搭搭插件下载	[2016-03-27]		

资源界面下,点击"好好搭搭插件下载"。

thaohaodada 首页	〕 创作) 发现) 学习) 资源	nova 🔁
	[资源下载]→[软件资源] 好好搭搭插件下载 2016-03-27 10:53:53 阅读16851 ▲ 分享到34	
	点击下载 本工具中主要由两个软件组成,"好好搭搭硬件下载插件"和"好好搭搭在线编程插件"。"好好搭搭硬件下载插件"是haohaodada平台编 写好程序下载到设备中运行的下载工具(如机器人、Arduino、NOVA等需要把程序下载到设备中运行)。"好好搭搭在线编程插件"是 haohaodada平台在线编程,无需下载直接在haohaodada平台运行,就能进行设备和平台互动,适合制作互动媒体作品。(如传感器板、智能电 子积木等)	

点击"点击下载"字样,下载好好搭搭插件

下载文件为"haohaodada_setup.exe",双击安装。

点击"下一步"。

点击"浏览"选择插件安装路径,点击"下一步"继续。

点击"下一步"。

点击"安装"。

	-	
安装		WCH.CN USB-SERIAL CH340
卸载		08/08/2014, 3.4.2014
帮助		

点击"安装"。

暑 驱动安装(X64)		_		(
─ 驱动安装/卸载	۶. – Line Karley Kar			
选择INF文件	DriverSetup	×	~	
安装		:	340	
卸载	1 驱动安装成功!	J	4, 3.4.2014	
帮助	确定			
	B			

必须等待到"驱动安装成功!"提示框弹出后,方可关闭窗口。 好好搭搭插件程序安装完成!

三、 点亮一盏灯——用好好搭搭在线编程平台完成第一个项目

用 NOVA 电子积木点亮一盏 LED。

认识新模块:

Nduino HD 主控板:

模块连接规则——相同颜色互联:

- (1) 白色接口模块可以连接 Nduino 的白色接口 S0-S3,也可以连接主控板的黑色接口 A0-A3;
- (2) 黑色接口模块只能连接 Nduino 的黑色接口 A0-A3。
- (3) 红色接口模块连接 Nduino 的红色接口。

供电方案:

- (1) Micro USB 连接可以为 Nduino 提供 5V 电压和最大 500mA 电流,可以直接为白色和 黑色接口供电;
- (2) 当连接红色接口模块时,需由电源适配器(9V1A)或外接电池(电压 6V 以上)供电,Nduino才能正常工作。

9V1A 电源适配器

磷酸铁锂电池

注意:磷酸铁锂电池1节3.2V,切勿将其用于家用电器和其他电子设备!

LED 发光二极管:由含镓(Ga)、砷(As)、磷(P)、氮(N)等的化合物制成。具有单向导 通性,即 LED 有电流正向流入能点亮,反向流入或无电流则不亮。辨别发光二极管的正负极方 法如右图:

正视图

LED 模块:用于连接驱动 LED 发光二极管

元器件列表:

Nduino HD 主控板 ×1 LED 模块 ×1 LED 发光二极管 ×1

3Pin 2510 连接线(白) ×1

电路连接:

用 USB 线连接 PC 和主控 Nduino HD:

进入 NOVA 编程界面:

点击"创作"按钮

选择"Haohaodada_NOVA"点击进入

点击"转到设计页",进入编程界面

● 文件▼ 編辑▼		4 ★ X X 0	
	脚本		分享 🐼 转到项目页
	动作 車件 外現 控制 声音 依測 面管 数字和逻辑运算 数据 更多校块	好好抵抗硬件程序 x:-13 y: 6	
	新建功能块 haohaodada▼●		
x: 240 y: -180	▶ 好好搭搭硬件程序 读数字口 50 读版相口 40?		
舞台 1 背弦 新途背景	读脉冲引脚 50° 读超声波传感器在 A0°		
×/40	设置数字口 S0 输出为 T 设置PWM口 S0 输出为 0 设置PWM S0 频率为 523		
	设置舵机引脚 50° 输出角度 90° 双电机驱动 (M0° 电机输出 150°		
	HD-3A 电机 (MO) 输出为 (150) MP3 (play) 在引脚 (S0)	Q, = Q,	

接下来开始编程吧!

在好好搭搭在线编程平台上进行硬件编程,都需要打开"硬件下载插件"。

	好好 搭搭 硬件下载插件	
2014年1月19日 1月19日 1月19101 1月19日 1月19		×
选择串口 COM4 ▼ 型号	haohaodada	
串口:COM4 型号:haohaodada		

"选择串口"出现"COM口",且 COM口的编号与"设备管理器"中一致,则表示驱动

程序安装正常。

占 设		_	×
文件(<u>F)</u> 操作(A) 查看(V) 帮助(H)		
) 🗊 📴 🗾 💷 🖳 🗙 💿		
× 🗄	zqa-PC		^
>	🔐 DVD/CD-ROM 驱动器		
>	· ■ IDE ATA/ATAPI 控制器		
>	🧧 便携设备		
>	□ 处理器		
>	管 传感器		
>	磁盘驱动器		
>	🚂 存储控制器		
>	💼 打印队列		
>	🤪 电池		
~	₩ 端口 (COM 和 LPT)		
	USB-SERIAL CH340 (COM4)		
>			
>	🛄 监视器		
>			
>	8 蓝牙		
>	🛺 人体学输入设备		
>	▋ 软件设备		
>	👖 声音、视频和游戏控制器		
>	📗 鼠标和其他指针设备		
>	🏺 通用串行总线控制器		
>	▲ 图像设备		
>			~

注意:打开"硬件下载插件"后,一定不能关闭,否则程序无法下载到主控板 Nduino HD 中。

编写第一个程序——点亮 LED 灯

LED 灯的亮和灭两种状态,自然地联想到开和关两种状态,进一步联想到 0 和 1 两种状态,再进一步对应上"无"和"有"两种状态。像这类物理量被称为**开关量**,是一种数字量。

所以需要使用数字量相关程序块,对于主控板 Nduino HD 来说,点亮 LED 是由 Nduino 输出信号给 LED,因此使用"设置数字口...输出为..."程序块:

设置数字口 507 输出为 17

设置端口

点击"SO",弹出下拉菜单,选择数字口:

选择端口的原则是: 与硬件连接一致! 本例中 LED 模块是连接到 Nduino HD 的 S3 端口, 所以程序块选择 "S3"。

输出可选择"0"或"1",对应上"开"和"关",对应上 LED 是"亮"和"灭"。

注意:具体"0"对应的是"开"还是"关",LED 是"亮"还是"灭",不一定!不同的硬件有着不同的标准,所以大家不应该养成"0"对应"关"和 "1" 对应"开"这样的定式思维!

Nduino HD 的标准是"0"对应的是点亮 LED,"1"对应的熄灭 LED。

那么本例中点亮 LED 的程序为:

编译和下载程序

点击右上角"编译&下载"按钮。

	<i>灯灯拾拾</i> 便件柱序
罗辑运算	_ 设置数字口 S3 输出为 O →
央	
- •	
· · · · · · · · · · · · · · · · · · ·	是一些人,我们就是一些人,我们就是一些人,我们就是一些人,我们就是一些人,我们就是一些人。" 第1995年———————————————————————————————————
	文件编译成功是否下载
	下载
<u></u>	
J 🚺	

点击"下载"按钮,将程序下载到 Nduino HD 中。

再次提示:"硬件下载插件"在整个过程中不能关闭!

完成! 可以看到 LED 发光二极管亮起。

NOVA 电子积木完整使用流程:

第二课 LED 闪烁与调光

上节课大家已经掌握了 NOVA 电子积木的电路连接和好好搭搭在线编程平台的基本操作, 并实现了点亮 LED 的程序。本次课程将带大家进一步的了解 LED。

手机、平板可以说是大家使用最多的电子设备,大家会在晚上关灯后调低显示屏的亮度以保护眼睛,在白天强光下调高亮度以便看的更清楚。这些显示屏的背光光源都是 LED, LED 的 调光是如何实现的呢?先从 LED 的闪烁说起。

电路连接:

元器件列表:

Nduino HD 主控板 ×1

LED 模块 ×1

LED 发光二极管 ×1

3Pin 2510 连接线(白) ×1

认识新程序块——延时程序块

"控制"类目中的"等待"程序块可以用作程序的延时,单位为"秒"。

"更多模块"类目中的延时程序块,单位为"微秒",1秒=1000000 微秒

Haohaodada 程序编写:

我们来仔细思考下"闪烁"这个词,闪烁是灯亮一段时间,之后灭一段时间,如此循环 往复。那么,"闪烁"应该被拆分成"亮"、"灭"、"持续一段时间"这些动作的组合。其中, "亮"和"灭"可以通过"设置数字口"程序块实现:

重复闪烁需要用到"重复执行"程序块:

所以 LED 闪烁的程序是:

LED 的调光

LED 灯闪烁的程序已经实现,接下来做几个小实验:

小实验 1: LED 灯亮 100 毫秒, LED 灭 900 毫秒

程序**:**

实验1直观结果:LED闪烁,熄灭时间比亮起时间长。

小实验 2: LED 灯亮 10 毫秒, LED 灭 90 毫秒

好好搭搭硬件程序 重复执行 设置数字口 SOY 输出为 1 等待 0.09 秒 设置数字口 SOY 输出为 0 等待 0.01 秒

程序:

实验 2 直观结果: LED 快速闪烁,注意与实验 3 的直观结果做比较。

小实验 3: LED 灯亮 90 毫秒, LED 灭 10 毫秒

程序:

实验 3 直观结果: LED 快速闪烁,看上去比实验 2 亮多了。 小实验 4: LED 灯亮 90 微秒,LED 灭 10 微秒

程序:

实验 4 直观结果: LED 看上去完全不闪了,注意与实验 5 直观结果做比较。 小实验 5: LED 灯亮 10 微秒,LED 灭 90 微秒

程序:

实验 5 直观结果: LED 看上去完全不闪,但是比实验 4 的亮度低很多。

大家可以再试试 "0100" "2080"、"4060"、"5050"、"6040"、"8020"、"1000" 不同的组合,延时单位为微秒。可以看到这些参数组合的结果:亮度都不同。

结论: LED 的调光是通过在一定的时间间隔内,调节点亮和熄灭 LED 的相对时间来实现的。

PWM 输出调光

因为 NOVA 主控器运行程序是单线程的,如果在复杂程序里要调光,运行其他部分程序 的时间也会被计算到点亮或熄灭 LED 的延时时间中去,导致亮度调节不准确。所以在复杂程 序中需要实现调光功能时,需要调用 PWM 输出程序块。

PWM (脉冲宽度调制), 通过在一定周期内, 调节高电平和低电平的比例 (占空比), 实现平均电压的调节。如高电平电压为 5V, 则占空比 50%的 PWM 信号的平均电压为 2.5V。

PWM 输出的最大值为 255,最小值为 0。当 PWM 输出 255 时,LED 为完全熄灭,效果上等同于数字口置 1;当 PWM 输出 0 时,LED 为最亮,效果上等同于数字口置 0。

呼吸灯: LED 灯渐亮渐灭

第三课 蜂蜂音乐会

蜂鸣器模块用于发出一定频率的电子声。我们用它编制一首乐曲吧! 认识蜂鸣器

电路连接:

元器件列表:

- 1. Nduino HD 主控板 ×1
- 2. 蜂鸣器模块 ×1
- 3. 3Pin 2510 连接线(白) ×1

Haohaodada 程序编写:

发出一种频率的声音

声音的三个主观属性分别是音量(响度)、音调和音色。音量指人耳感受到的声音强弱; 音调指人的听觉能分辨一个声音的调子高低的程度;音色指声音的感觉特性,即根据不同的音 色,即使在同一音高和同一声音强度的情况下,也能区分出是不同乐器或人发出的。

蜂鸣器的驱动电流(PWM占空比)决定了蜂鸣器发声的音量;蜂鸣器的工作频率(PWM 频率)决定了蜂鸣器发声的音调;蜂鸣器的内部结构与发声原理决定了蜂鸣器发声的音色。 蜂鸣器鸣响程序范式:

发出C调音符

我们听到的音乐,每个音符都有固定的频率,比如C调音符相对应的频率如下图所示:

C 调音符	1	2	3.	4	5	ė	?
频率	262	293	329	349	392	440	494
C 调音符	1	2	3	4	5	6	7
频率	523	586	658	697	783	879	987
C 调音符	i	ż	3	$\dot{4}$	5	6	ż
频率	1045	1171	1316	1393	1563	1755	1971

请编写程序,比如编写一段自动演奏《两只老虎》的音乐程序,《两只老虎》的简谱如下:

	两只老虎															
	1 = 中速	Έ	<u>4</u> 4													
1	2	3	1	1	2	3	1	3	4	5	-	3	4	5	-	
两	只	老	虎,	两	只	老	虎,	跑	得	快,		跑	得	快,		
									-			1	F	1		
50	5 <u>5</u>	43 5 T	1	50	<u>5</u>	43	1	1 1	5 *	1	-	। ਯ	? 太	ا الا	-	
一六	汉人	月上	宋,		K K	乍厇	.Ľ,	具	可	注,		央	리	'Æ ₀		

第四课 RGB 七彩灯

前两节课用到的 LED,只能发出固定颜色的灯光,当需要发出更多颜色的光时,可以使用 RGB 模块。很炫哦!

认识 RGB

电路连接:

元器件列表:

- 1. Nduino HD 主控板 ×1
- 2. RGB 模块 ×1
- 3. 3Pin 2510 连接线(白) ×1

Haohaodada 程序编写:

—。

RGB 色彩模式是工业界的一种颜色标准,是通过对红(R)、绿(G)、 蓝(B)三个颜色通道的变化以及它们相互之间的叠加来得到各式各样的 颜色的, RGB 即是代表红、绿、蓝三个通道的颜色,这个标准几乎包 括了人类视力所能感知的所有颜色,是目前运用最广的颜色系统之

RGB 模块点亮程序范式:

复执行	- 需要重复执行	Ŧ				
RGB复位	— 复位RGB					
发送RGB数据 S3	红 507 绿 0	▶ 蓝 0▼	←	— 写入	1号灯的	JR
发送RGB数据 S3	红 💽 绿 50	▶ 蓝 0▼	. ←	— 写入	2号灯的	JR
发送RGB数据 S3	红 💽 绿 💽	蓝 50] ←	— 写入	3号灯的	JR
发送RGB数据 S3) 红 💽 绿 💽	蓝 💽	-	— 写入	4号灯的	JR
tin se	1997 - 1997 - 199					

以上程序点亮的效果如下图:

颜色数值列表

第五课 数字显示屏

右图这种计算器相信大家都不陌生,这种液晶显示屏只能显示数字,称之为**数码管**。相对于电视或手机屏幕,这种显示屏使用上更加简单,当创客项目中仅需要显示数字而不需要显示 文字、图片信息时,可以使用数码管来简单快速的实现。

NOVA 电子积木中提供了两种数码管,一种数字和小数点, 另一种显示时间。

认识数码管

数字数码管

元器件列表:

- 1. Nduino HD 主控板 ×1
- 2. 数码管模块 ×1
- 3. 4Pin 2510 连接线(红)×1

Haohaodada 程序编写:

显示一个整数:

显示一个小数:

显示一个变量:

第六课 直流电机驱动

电动机是将电能转换为机械能的一种执行器,通常简称为**电机**。让机构旋转起来,最简单 直接的方法就是使用电机。

认识电机

130 电机

TT 电机

电路连接:

元器件列表:

- 1. Nduino HD 主控板 ×1
- 2. 单电机驱动模块 ×1
- 3. 4Pin 2510 连接线(红)×1
- 4. 130 电机/TT 电机 ×1

Haohaodada 程序编写:

让电机转动:

睡眠模式电风扇:类似呼吸灯的风扇速度渐快渐慢效果。

好好搭搭硬件程序
将 step V 设定为 -50
重复执行
重复执行 200 次
HD-3A 电机 MO 输出为 step
将变量 step 的值增加 -1
等待 0.02 秒
重复执行 200 次
HD-3A 电机 MO 输出为 step
将变量 step 的值增加 1
等待 0.02 秒

第七课 舵机驱动

舵机是带有位置反馈电路的直流电机,是一种伺服电机。 认识舵机

SG90 舵机

舵机驱动

电路连接:

元器件列表:

- 1. Nduino HD 主控板 ×1
- 2. SG90 舵机 ×1

Haohaodada 程序编写:

让舵机转动到一个角度:

好好搭搭硬件程序											
设置舵机引脚 SOT 输出角度 90T											
	0										
各度值范围为 0 [~] 180	45										
用反阻心回刃 0 100。	90										
	135										
	180										

舵机摇摆:从0度转到180度,再从180度转到0度。

好好搭搭硬件程序
重复执行
设置舵机引脚 SOY 输出角度 180Y
等待1秒
设置舵机引脚 SOT 输出角度 OT
等待1秒

第八课 数字量传感器

传感器是自动化机器的感知器官,能感知外界的信息,并转换为电信号输送给主控制器。 **数字量传感器**

这类传感器只有"开"和"关"两种状态,对应数字"0"和"1"。 认识新模块:

按钮开关:感知外界时候有物体按压它。

小实验:用数码管显示数字量传感器的状态,以按钮开关为例。 电路连接:

元器件列表:

- 1. Nduino HD 主控板 ×1
- 2. 按钮开关模块 ×1
- 3. 数码管模块 ×1
- 4. 3Pin 2510 连接线(白)×1
- 5. 4Pin 2510 连接线(红)×1

Haohaodada 程序编写:

好好搭搭硬件程序	
重复执行	-
将 D_port 设定为 读数字口 SOY	
数码管清除	
数码管 MOT 显示 Num▼ D_port	

下载程序后,可以看到当按钮按下时,数码管显示0,当按钮松开时,数码管显示1。大家可以把按钮开关换成其他开关量传感器模块。

小实验:用按键控制 LED 亮灭

电路连接:

元器件列表:

- 1. Nduino HD 主控板 ×1
- 2. 按钮开关模块 ×1
- 3. LED 模块 ×1
- 4. LED 发光二极管 ×1
- 5. 3Pin 2510 连接线(白)× 2

Haohaodada 程序编写:

同学们还可以试试用按键控制蜂鸣器、电机和舵机。

第八课 模拟量传感器

模拟量传感器

模拟量是指在一定范围内连续变化的量,比如温度、亮度、角度、距离等。 认识新模块:

电位器模块:一种旋转变阻器,可以用作旋钮,可以感知角度的变化。

超声波测距传感器:通过发射接收超声波来测量超声波模块与障碍物距离。

光强传感器模块:用来检测当前的光照强度。

声音传感器模块:用来检测当前环境的声音强度。

用这些传感器配合数码管可以制作各式各样的测量仪表,如超声波测距仪、光照强度 仪、噪音计 小实验:用数码管显示模拟量传感器的状态,以电位器模块为例。 电路连接:

元器件列表:

- 1. Nduino HD 主控板 ×1
- 2. 电位器模块 ×1
- 3. 数码管模块 ×1
- 4. 3Pin 2510 连接线(黑)×1
- 5. 4Pin 2510 连接线(红)×1

Haohaodada 程序编写:

从结果可以看出,模拟量传感器输入的范围是0~4095。

小实验:用电位器控制 LED 的调光

电路连接:

元器件列表:

- 1. Nduino HD 主控板 ×1
- 2. 电位器模块 ×1
- 3. LED 模块 ×1
- 4. LED 发光二极管 ×1
- 5. 3Pin 2510 连接线(白)×1
- 6. 3Pin 2510 连接线(黑)×1

Haohaodada 程序编写:

好好打	峇搭硬件 君	序							
重复打	丸行	* * * * *							
将	A_port *	设定为	读模	扨ロ		.07			
设置	〖PWM 口	S0 新	出为		_pe	ort	1	16	
	َ (ا		н					1	

同学们还可以试试用其他模拟量传感器控制蜂鸣器、电机和舵机。

第九课 温度和湿度检测

认识新模块:

温湿度传感器:能检测温度和湿度。

温湿度检测程序块:能切换获取温度和湿度。

re	ad	DH	T11	. 湿度 as pi	n 507
	· ·			温度	
			н 1	湿度	

小实验:制作一个温湿度检测仪。

电路连接:

元器件列表:

- 1. Nduino HD 主控板 ×1
- 2. 温湿度传感器 ×1
- 3. 数码管模块 ×1
- 4. 按钮模块 ×1
- 5. 磷酸铁锂电池 ×2
- 6. 3Pin 2510 连接线(白)×1
- 7. 4Pin 2510 连接线(红)×1

Haohaodada 程序编写——显示温度:

好好搭搭硬	件程序									
重复执行										
将 wend	u 设定为	read	DHT	11. (温度	D a	as p	oin	SO	$\mathbf{\overline{O}}$
DigitDis	splay MO	clear		- -						
数码管 ▶	40 ┛显示 №	um	vend	u						
÷										

Haohaodada 程序编写——显示湿度:

好好搭搭硬件程序										
重复执行										
将 shidu 设定为	read	DH	F11	. (3	腹	a	S	pin	SO	
DigitDisplay M0	💙 clea	r k						•		
数码管 MO [™] 显示	Num	shic	lu							
			-							

Haohaodada 程序编写——按键切换显示温度和湿度:

好好搭搭硬件程序	
重复执行	
将 wendu 改定为 read DHT11. 温度 as pin	SOT
将 shidu 改定为 read DHT11. 湿度 as pin G	507
DigitDisplay MO clear	
如果 读数字口 S3 那么 如此的 如此的 如此的	
数码管 MOY 显示 NumY wendu	
否则	
数码管 MOY 显示 NumY shidu	

第十课 超声波测距传感器

认识新模块:

超声波测距传感器:能检目标物体与传感器的距离。

温湿度检测程序块:

小实验:制作一个超声波测距仪。

电路连接:

元器件列表:

1. Nduino HD 主控板 ×1

- 2. 超声波测距传感器 ×1
- 3. 数码管模块 ×1
- 4. 磷酸铁锂电池 ×2
- 5. 3Pin 2510 连接线(黑)×1
- 6. 4Pin 2510 连接线(红)×1

Haohaodada 程序编写——超声波测距仪:

好好搭搭硬件程序 重复执行 等待 0.2 秒 DigitDisplay M0▼ clear	增加少量延时,以免数码 管数字跳动过快。
数码管 MO▼显示 Num▼ i	卖超声波传感器在 A0▼

第十一课 红外遥控

认识新模块:

红外接收模块:能接收红外遥控器发射的信号

红外遥控器:能发射红外遥控信号

读取红外遥控信号: 必须新建一个变量用于存储红外值!

小实验一:用红外遥控控制 LED 的亮灭。

电路连接:

元器件列表:

- 1. Nduino HD 主控板 ×1
- 2. LED 模块 ×1
- 3. LED 发光二极管 ×1
- 4. 红外接收模块 ×1
- 5. 3Pin 2510 连接线(白)× 2

Haohaodada 程序编写——用红外遥控控制 LED 的亮灭:

好好搭搭硬件程序
重复执行
将 ir 设定为 读取红外值在引脚 SOY
如果 (ir) = 红外按键值 IR_BUTTON_OK) 那么
设置数字口 S3 输出为 0 ▼
如果 ir = 红外按键值 IR_BUTTON_0 那么
设置数字口 S3 输出为 1

小实验二:用红外遥控控制 RGB 的变色。

电路连接:

元器件列表:

- 1. Nduino HD 主控板 ×1
- 2. RGB 模块 ×1
- 3. 红外接收模块 ×1

4. 3Pin 2510 连接线(白)×2

Haohaodada 程序编写——用红外遥控控制 RGB 的变色: 主程序:

颜色设置模块程序:

定义 color R red G green B blue
RGB复位
发送RGB数据 S3 红 red 绿 green 蓝 blue
发送RGB数据 S3 红 red 绿 green 蓝 blue
发送RGB数据 S3 红 red 绿 green 蓝 blue
发送RGB数据 S3 红 red 绿 green 蓝 blue

颜色选择模块程序:

